Resonant Leading Term Geometric Optics Expansions with Boundary Layers for Quasilinear Hyperbolic Boundary Problems
نویسندگان
چکیده
منابع مشابه
Geometric Optics Expansions with Amplification for Hyperbolic Boundary Value Problems: Linear Problems
We compute and justify rigorous geometric optics expansions for linear hyperbolic boundary value problems that do not satisfy the uniform Lopatinskii condition. We exhibit an amplification phenomenon for the reflection of small high frequency oscillations at the boundary. Our analysis has two important consequences for such hyperbolic boundary value problems. Firstly, we make precise the optima...
متن کاملEigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملGeometric optics and boundary layers for Nonlinear-Schrödinger Equations
where φ0 is real-valued. We are interested in the semiclassical limit ε → 0. The nonlinear Schrödinger equation (1) appears, for instance, in optics, and also as a model for Bose-Einstein condensates, with f(ρ) = ρ − 1, and the equation is termed Gross-Pitaevskii equation, or also with f(ρ) = ρ2 (see [13]). Some more complicated nonlinearities are also used especially in low dimensions, see [12...
متن کاملeigenfunction expansions for second-order boundary value problems with separated boundary conditions
in this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملStability of Finite Difference Schemes for Hyperbolic Initial Boundary Value Problems: Numerical Boundary Layers
In this article, we give a unified theory for constructing boundary layer expansions for discretized transport equations with homogeneous Dirichlet boundary conditions. We exhibit a natural assumption on the discretization under which the numerical solution can be written approximately as a two-scale boundary layer expansion. In particular, this expansion yields discrete semigroup estimates tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2014
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2014.966270